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Abstract. Computer simulations, using the molecular dynamics and Monte Carlo techniques,
and employing simple molecular models, yield insight into general features of phase equilibria,
structure, and dynamics of liquid crystals. Here, results are reported from extensive simulations
of the Gay–Berne family of molecular models, in which potential parameters are adjusted to vary
the molecular length-to-width ratio in a systematic way. Attention is paid to the characterization
of nematic, smectic-A and smectic-B phases as functions of these parameters.

A simulation study of the approach to the isotropic–nematic phase transition, using a large
system size and lengthy runs on the T3D parallel supercomputer, is described. Spatially long-
ranged collective orientational correlations develop in the isotropic phase, close to the transition.
The direct correlation function has been calculated for these systems, and remains short-ranged,
as expected, as the transition is approached. The simulation results are compared with the
density functional analysis of isotropic instability relative to the nematic phase.

1. Introduction

Computer simulation can contribute to our understanding of liquid crystals by relating
detailed molecular structure to observed phase behaviour and properties; and by testing, in
a microscopic way, the basis of theories of phase transitions, structure and dynamics. This
paper reports briefly on two pieces of work carried out in our group with these aims in
mind.

We are examining the Gay–Berne family of models [1], which represent nematogenic
molecules as rigid, axially symmetric units interacting through a pair potential of the general
form

UGB = 4ε(r̂, u, v)

[(
1

r − σ(r̂, u, v) + 1

)12

−
(

1

r − σ(r̂, u, v) + 1

)6
]

.

Here r is the centre–centre vector,r its magnitude, and̂r is a unit vector in the same
direction; u, v are unit vectors along the molecular axes. The potential depends upon an
orientation-dependent diameterσ(r̂, u, v|κ, κ ′, µ, ν) and an orientation-dependent energy
parameterε(r̂, u, v|κ, κ ′, µ, ν), each of which in turn depends parametrically on shape and
energy anisotropies,κ, κ ′ respectively, plus two exponentsµ, ν. The quantitiesσ and ε

define the length scale and attractive well depth of a Lennard-Jones-like potential form for
any given pair orientation.

2. Molecular shape and phase behaviour

The most thoroughly studied member of the Gay–Berne family [2, 3, 4] is defined by
κ = 3, κ ′ = 5, µ = 2, ν = 1: this system exhibits phases identified as isotropic liquid
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(I), vapour (V), nematic (N) and smectic-B (SB); the nematic phase occurs at temperatures
higher than the I–V critical point. It is of great interest to examine systematically the effects
of varying the parameters around these values. Martı́n del Ŕıo, de Miguelet al [5, 6] have
studiedκ = 3, κ ′ = 1, . . . , 25, showing that a reduction in the well-depth anisotropy,
κ ′, increases the liquid–vapour coexistence range until it intersects with the nematic phase:
thus nematic–vapour coexistence may be simulated. In this study, we report our preliminary
results on increasing the molecular length-to-width ratioκ = 3, . . . , 4 while keepingκ ′ = 5.

We have studiedκ = 3.0, 3.2, 3.4, 3.6, 3.8 and 4.0 using molecular dynamics and Monte
Carlo techniques. The liquid–vapour coexistence curve in the temperature–density,T –ρ,
plane was investigated by Gibbs ensemble Monte Carlo [7] and Gibbs–Duhem integration
[8, 9] but in fact we could only locate this curve forκ 6 3.2 and it is possible that it
disappears altogether for higher elongations. This means that at lowT and mediumρ, the
phase diagram is dominated by the SB–V coexistence region. At higher temperature and
density, we find a narrow region of stability for the smectic-A (SA) phase forκ > 3.4,
whereas this is absent or at best metastable forκ < 3.4. The SA appears to be squeezed out
between N and SB as the temperature is increased further. Full details of these simulations
will be given in future publications.
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Figure 1. The transverse correlation functionsg11 and g12, and the longitudinal correlation
function g‖, for SB (solid line), SA (dashed line) and N (chain line) phases.

In studying these smectic phases we found it essential to use extremely long simulation
runs (of order 5×105 MD timesteps or MC attempted moves per particle) to allow metastable
states to properly equilibrate. System sizes of orderN = 600 permitted typically six layers
to form in a cuboidal periodic box with independently varying dimensions, but the study of
larger systems would be highly desirable. In characterizing these phases, we found it useful
to calculate three kinds of pair distribution function. The first,g‖(z), measures correlations
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Figure 2. The orientational correlation functionh220(r) and (inset) direct correlation function
c220(r), at temperaturesT = 3.50 (solid line) and 4.00 (dashed line). The N–I transition
temperature is estimated to lie just belowT = 3.50.

along the director, and reveals the formation of smectic layers. The second,g11(s), is a
two-dimensional pair correlation function between molecules inthe same layer, where s

measures the distance between molecules in thexy-plane. The third,g12(s), is similarly
defined, but for pairs inadjacent layers. All three are illustrated in figure 1 forκ = 3.8.
In the nematic phase,g‖(z) shows no long-ranged structure andg11(s), g12(s) cannot be
properly defined. In a smectic-A phase,g‖(z) reveals well-defined layers,g11(s) shows
two-dimensional liquid-like correlations decaying with distance, andg12(s) indicates almost
no registry at all between layers. Finally, in a smectic-B phase, all three functions show
well-defined correlations characteristic of crystal-like packing (our systems are too small to
distinguish hexatic-B phases). We note that, on cooling these smectic-B phases to very low
T at zero pressure, we see no phase transitions; indeed, they already exhibit well-defined
solid-like structure, and a preliminary calculation of their shear moduli suggests that it may
be more appropriate to refer to them as solids rather than SB phases.

3. The direct correlation function and the I–N transition

The pair correlation functionh(1, 2) is defined in terms of the usual pair distribution function
g(1, 2): h(1, 2) ≡ g(1, 2) − 1 = g(u, v, r) − 1. Thedirect correlation functionc(1, 2) is
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obtained from the Ornstein–Zernike (OZ) equation:

h(1, 2) = c(1, 2) + ρ

4π

∫
d3 h(1, 3)c(3, 2)

where we integrate over position and orientation of a third, intermediate, molecule.c(1, 2)

is expected to be a shorter-ranged function thanh(1, 2) for the molecules of interest to us.
These functions are conveniently expanded in rotational invariants [10]; for example, in the
isotropic phase,

h(u, v, r) =
∑
mnl

hmnl(r)8mnl(u, v, r̂)

where for the molecules of interest to us,m, n, l are all even integers. The set of functions
hmnl(r) describe angular correlations as functions of distance. The componenth220(r)

measures the second-rank orientational correlations that grow in range as one approaches
the I–N transition, and eventually diverge on entering the nematic phase. It is of interest to
discover whether or not the direct correlation function remains short-ranged in this limit.

We have recently presented a method for inverting the OZ equation and obtainingc(1, 2)

in the isotropic phase, from simulationh(1, 2)-data, for molecular systems [11]. We have
studied the version of the Gay–Berne model withµ = 1, ν = 3, κ = 3, κ ′ = 5 originally
proposed by Berardiet al [12], very close to the I–N transition. We used a system size
N = 8000 in a cubic box, employing an efficient parallel MD code, and using up to 450 000
timesteps (δt = 0.004) to ensure relaxation of orientational modes.

Typical results are shown in figure 2. We see thatc220(r) indeed remains short-ranged
even whenh220(r) indicates very close proximity to the phase transition. The amplitude
of c220(r) within the molecular core increases slightly, asT is lowered. The instability
criterion for the isotropic phase relative to nematic phase, discussed in terms of density
functional theory [13, 14, 15] may be expressed in terms of the integral

c(m) ≡ ρ(2m + 1)−1/24π

∫ ∞

0
dr r2cmm0(r) → 1.

We find thatc(2) does indeed approach this limit as the transition is approached. Further
details of this work will be published elsewhere [16].
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